Git: A Guide for Economists

Frank Pinter

22 February 2019

1/32

Outline

The importance of version control

Getting started on a project

Using Git

Using Git for collaboration

2/32

What is version control?

Version control is a way to keep track of changes to code, text,
and documents. And data and outputs.

>
>
>

It gives you an organized revision history
It lets you experiment without fear

It lets you go back and forth between many different versions
of the same file, and see a list of the differences

It makes (the technical aspects of) collaboration a breeze

It lets you and your collaborators work on different versions
and then merge them

3/32

What is Git?

» Git is a program that does version control

» It is the most popular version control program in software
development

P It is easy to set up and get started

» There are many programs that add intuitive interfaces on top
of Git

> Git integrates seamlessly with online collaboration tools like
GitHub and GitLab

4/32

Table of Contents

The importance of version control

5/32

Life without version control

Do you keep every variant of every program you ever wrote on a
project?
» The code and the outputs?
> What if you discover a coding error? Which versions are right?
» How do you organize all the files?
Or, worse, do you only keep the latest thing you tried?
» What if you introduce a new mistake?

» What if you're experimenting and you accidentally keep the
experiment in?

6/32

Version control 0.1: putting dates on things

Does this look familiar?

run_regs_11_17_2018_v4_final final.do

“Not one piece of commercial software you have on your PC, your
phone, your tablet, your car, or any other modern computing
device was written with the ‘date and initial’ method.” (Gentzkow
and Shapiro)

7/32

Version control 0.2: Dropbox

» Dropbox keeps a crude version history.

» But there are no labels or comments, and it's not easy to see
the differences between files.

» So if you want to dig up “the version where | had that other
variable” you have to manually look through a bunch of
versions.

» And good luck if you changed two scripts, not just one.

» Dropbox lets you and your collaborators stay in sync.

» What if you and your coauthor try to change the same script
at the same time?

» What if you are trying one change and, at the same time, your
coauthor is trying a different change?

8/32

Version control 0.2: Dropbox

A Post It note spotted on a grad student's desk:

Don't forget! At 10:18 am on November 17th, we changed
the specification to add new variable.

Don't live this way.

9/32

Table of Contents

Getting started on a project

10/32

Why use Git?

Git is the dominant version control system today. There are others,
but they're generally more work with no benefit.

11/32

Getting started with Git

1. Install Git (Linux, Mac, Windows)
2. Git comes with a command line interface (powerful!). You

might want to add a graphical interface to make things easier:

> GitKraken

» The examples in this presentation use GitKraken
» GitHub Desktop
» RStudio (for R projects)

12/32

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.gitkraken.com/
https://desktop.github.com/
https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN

Getting started with your project

If you're starting your own project in GitKraken:

» Open GitKraken and select “Start a local project” or “Start a
hosted project” (will get into this later)

» Choose the name and the local directory to use
» Start working in the directory

If your coauthor started a project, added you to it online, and
you're putting it on your own computer:

» Open GitKraken and go to File —Clone

> Select the service (GitHub/GitLab/Bitbucket), log in if
necessary, and select the project from the list

» Choose the local directory to save it to

13/32

What actually is the Git repository?

» The Git local repository is associated with a particular
directory

» Open the directory in your Git interface to see your options

> Git stores all its workings in that directory in a hidden
subfolder called “.git"

» Corollary: don't use Git inside a Dropbox shared folder!

» Sharing is what remote repositories and hosting services are
for (more on this later)

14/32

https://stackoverflow.com/questions/19305033/why-is-putting-git-repositories-inside-of-a-dropbox-folder-not-recommended

What should | include?

1. At a minimum:
» Code (.do, .R, .m, .jl1, and so on)
> Text files (.txt)
> IATEX documents (.tex)
2. | also recommend:
> Raw .csv datasets, if small (<10 MB)
3. These are binary files, so you can’t see differences between
versions. | recommend including them anyway.
» PDF files
» Word, Excel, PowerPoint files
4. Some people also include all datasets.
» Note that GitHub doesn't allow files larger than 100 MB, or
projects with total size larger than 1 GB.

For datasets, look into Git Large File Storage.

15/32

https://git-lfs.github.com/

What should | exclude?

In order to avoid driving your coauthors crazy, you must tell Git to
ignore the junk files using a file called .gitignore. It looks like this:

Junk created by LaTeX
.synctex.gz

.out

.log

Junk created by R
.RData

Junk created by Python

*.pyc

H ¥ ¥ ¥ H

Best practice: use .gitignore to explicitly exclude everything that
you don’t want to include, and commit .gitignore like any other
regular file.

GitHub maintains a list of standard .gitignore files for many
common languages.

16/32

https://help.github.com/articles/ignoring-files/

Table of Contents

Using Git

17/32

The Git model

1. You do work in your working directory.
2. Then you add it to your staging area.

3. Once you've staged all your changes for one discrete task,
commit a snapshot of the staging area.

4. If you have a remote repository, push your commit to the
remote repository.

Stage changes Commit Push
git add git commit git push

N N N

File changes in Remote repository

working directory Staged Files Local repository (GitHub, GitLab)

(Unstaged Files) (optional)

18/32

Commits: saving a snapshot

What is “one discrete task”? A collection of changes, across
multiple files, that does one thing. Examples:

» Change the formatting of a variable from string to numeric,
and treat it properly across multiple scripts

» Change your regression specification in code, in the output,
and in your paper and supporting documentation

» Add a new function, and tests for that function

These form one commit, which you annotate with a detailed
commit message. Examples:

» “Change the formatting of start date variable from string to
Stata date format”

> “Add year dummies to regression specification”

The more detail, the more your future self will thank you.

19/32

Commits

~ Staged Files (2) Unstage all changes

[¥] git-for-economists-presentation.pdf

[+] git-for-economists-presentation.tex

Commit Message

Add slide on the Git model

Explain staging and committing

Commit changes to 2 files

20/32

Run tests before you commit

Your code should run properly when you commit.
» No runtime errors

» Test this by running all code that changed, and everything
that depends on it

» Makefiles automate this process

» Only skip if you are sure you didn't change anything important

» No compilation errors (including IATEX)
» All your tests should pass

» Output should be consistent with what you've written

» Don't report a negative regression coefficient, and write in
words that the estimated coefficient is positive

But it's better to have frequent commits (that might have small
mistakes) than to have giant, infrequent commits.

21/32

Viewing changes when committing

Git easily lets you see what changed in IATEX, code (not
images/PDFs/most datasets). Review this when staging!

Discard Hunk | | Stage Hunk |

\begin{frame}{Getting started}
\end{frame}

\begin{frameH{Commits: logging your changes}
\begin{frame{The Git model}

\begin{enumerate}

\item You do work in your \textbf{working directory}.

\item Then you add it te your \textbf{staging area}.

\item Once you've staged all your changes for one discrete task, \textbf{(commit}.
\end{enumerate}

\end{frame}

\begin{frame}{Commits: saving a snapshot}
\end{frame}

\begin{frameH{What should | include?}

(This is the GitKraken interface, but it looks similar in any other
interface)

22/32

Viewing history

GitKraken shows you a list of past changes. You can also see just

the history of a particular file:

File History: git-for-economists-presentation.tex

8cbcso

minutes ag Pinter

i ﬁ ive an example of a gitignore file

* Add diagram, commit screenshot, examples of commi... 76c270
Frank Pinter
<3 < Add ks s \itle[Git for Economists}{Git and GitHub: A Guide for Economists}
W cers thor(Frank inte)
\date{Spring 2015}
\date(22 February 2019}

e '8 upon commit
\AtBeginSection(]
€

* Add slide on the Git model

8ebdb8

* 4 * Update presentation date a705e6
21 days ago by Frank Pinter

23/32

Undoing history

What happens when a commit was a mistake? Revert it, to make
a new commit that undoes it.
In GitKraken, right click on the commit line and select “Revert

commit” .
v testing-revert 0 Add screenshot to slide on reverting

Revert "Revert "Start a slide on reverting™

Revert "Start a slide on reverting”

Start a slide on reverting

24 /32

Branches: trying things out
Branches are the most powerful part of Git

>

>
>

By default, all the work you do goes into the “master” branch

Want to experiment? Start a new branch
You can switch between branches, and make commits to
either branch
» There is a catch: if you don't include your intermediate/final
datasets in Git, you may need to re-make them when you
switch
If your experiment works out, commit and merge back into
the master branch
» |f there are conflicts between the commits you've made on the
two branches, Git will ask you to resolve them
» This is easiest with a graphical interface like GitKraken
» This can't be done with binary files (PDF, images, Word,
Excel). You'll just have to decide which one to keep.

If your experiment doesn’t work out, delete the new branch
painlessly

25/32

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://support.gitkraken.com/working-with-repositories/branching-and-merging/

Keeping it local vs. using a remote repository

Git doesn't require a remote repository. You can run it 100% on
your computer, with no connection to an outside server.
» This is useful if you have restrictions on your code (for
example, you work with confidential health data)
» Ask me if you have questions about using Git this way on the
NBER cluster
P> But a remote repository helps you keep things backed up
seamlessly, and lets you collaborate with others

» You can push all your branches to the remote repository, or
only some of them

26/32

Table of Contents

Using Git for collaboration

27/32

Remote repository

The remote repository is on a server, and holds a record of your
commits and branches

>

>
>
>

v

You push to the remote repository to save all your commits
You pull from the remote repository to load all new commits
Always commit before pushing or pulling

If what you're doing is an experiment, make a new branch to
avoid any trouble for your coauthor

As with branches, if there are conflicts between your commits
and your coauthor’s commits, Git will ask you to resolve them

28/32

Hosting services
To collaborate, you'll need a service to host your remote repository.

» Here are a few:

» GitHub (most popular)
> GitLab
> Bitbucket

» You can choose public (published for the world to see) or
private (best for research in progress)

> Most services have restrictions on private repositories

> It's easy to use one service for one project, and another
service for another project

> All these services have nice web interfaces for managing your
project

> Some also have integrated task management systems

29/32

https://github.com/
https://gitlab.com/
https://bitbucket.org/

Learning the command line

» There are many more features that are best accessed from the
Git command line

» And in some situations (like the NBER servers) you don't
have a choice

» A fantastic resource for learning the command line: Jesis
Fernandez-Villaverde's notes on Git (https://www.sas.
upenn.edu/~jesusfv/Chapter_HPC_5_Git.pdf)

» See also his class!

30/32

https://www.sas.upenn.edu/~jesusfv/Chapter_HPC_5_Git.pdf
https://www.sas.upenn.edu/~jesusfv/Chapter_HPC_5_Git.pdf

Conclusion

> At its simplest, Git is a way to keep track of the history of
your work, and easily go back to past versions

» But it can be so much more!

» Experiment without fear

» Collaborate with far less back-and-forth
» The best way to learn Git: use it!

31/32

Further reading

» Again, Jests Fernandez-Villaverde's notes on Git (https://
www.sas.upenn.edu/~jesusfv/Chapter_HPC_5_Git.pdf)

» Hadley Wickham's book on writing R packages. The chapter
on Git and GitHub (http://r-pkgs.had.co.nz/git.html)
is well-written and not specific to R.

» If you want to drill down on workflow, see the tutorial
“Understanding the GitHub flow"
(https://guides.github.com/introduction/flow/)

32/32

https://www.sas.upenn.edu/~jesusfv/Chapter_HPC_5_Git.pdf
https://www.sas.upenn.edu/~jesusfv/Chapter_HPC_5_Git.pdf
http://r-pkgs.had.co.nz/git.html
https://guides.github.com/introduction/flow/

	Introduction
	The importance of version control
	Getting started on a project
	Using Git
	Using Git for collaboration
	Conclusion

